Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38541460

RESUMO

Adsorptive, catalytic, and antibacterial properties of clinoptilolite-rich tuffs (ZT) are presented here. ZT transformed into Fe-containing ZT (Fe-ZT) removes various organic and inorganic anions from water. Fe-ZT, which contains selenium, is beneficial for growing Pleurotus ostreatus mushrooms. The fungi convert inorganic Se from Fe-ZT into a more useful organically bonded form. ZT and Fe-ZT as supplements retain nitrogen and potassium in sandy, silty loam and silty clay soils. ZT shows an affinity toward toxic metal cations, which are essential for cleaning contaminated water. The adsorption of atenolol, acetylsalicylic, and salicylic acid onto M-ZT (M-Cu2+, Mn2+, Ni2+, or Zn2+) from water solutions suggests that both the natures of M and pharmaceuticals have a significant impact on the adsorption mechanism and determine the adsorption capability of the ZT. ZT is an excellent carrier for ultrafine (2-5 nm) nano oxide particles, which have been shown to have catalytic activity in different chemical processes and photodegradation reactions of organic pollutants. ZT can also be transformed into SO4-SnO2-ZT, which is catalytically active as a solid acid. M-ZT is an effective carrier of valuable bacteria. Ag-ZT possesses beneficial bactericidal activity in disinfecting water and soil remediation.

2.
Food Technol Biotechnol ; 60(1): 67-79, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35440876

RESUMO

Research background: In the recent years, considerable attention has been given to selenium status since its deficiency is linked with various disorders and affects at least 13% of world population. Additionally, mushrooms are known to possess pronounced capacity for absorption of various micronutrients, including Se, from soil/substrate. Here, we investigate the possibility of using Se-rich zeolitic tuff as a supplement for production of selenized mushroom. Furthermore, the impact of the enrichment on the activity of antioxidant enzymes and biological potential of Coriolus versicolor medicinal mushroom is studied. Experimental approach: Se(IV)- and Se(VI)-modified natural zeolitic tuff from the Serbian deposit Zlatokop was used as supplement for mushroom cultivation. To examine the effectiveness of selenium enrichment, we determined total selenium with inductively coupled plasma mass spectrometry (ICP-MS), together with the activity of antioxidant enzymes in fresh fruiting bodies and biological potential of methanolic extracts. Antioxidant activity was evaluated using the appropriate tests for: inhibition of lipid peroxidation, DPPH free radical scavenging assay, Fe(III)-reducing antioxidant power assay and ability of chelating Fe2+ ions. The antibacterial activity against foodborne pathogens was measured by broth microdilution assay. Additionally, chemical composition of the prepared extracts was studied using UV-Vis and Fourier transform infrared (FTIR) spectroscopy. Results and conclusions: Content of selenium detected in biofortified C. versicolor was even 470 times higher than in control on dry mass basis ((140.7±3.8) vs (0.3±0.1) µg/g), proving that Se-rich zeolitic tuff is an excellent supplement for mushroom production. Furthermore, the results of monitoring the activity of antioxidant enzymes revealed that most of the Se-enriched mushrooms exhibited higher superoxide dismutase (SOD) and catalase (CAT) and lower glutathione peroxidase (GSH-Px) activities than control. Due to higher amounts of enzymes, which can quickly catalyze the reduction of superoxide radicals, the quality of selenium-enriched mushrooms is preserved for a longer period of time. Investigation of biological potential indicated that Se-enriched mushroom methanolic extracts, generally, expressed enhanced antioxidant properties. Additionally, extracts showed antibacterial activity against all tested pathogenic microorganisms. Novelty and scientific contribution: Cultivation of mushrooms on Se-enriched zeolitic tuff is a new technological approach for obtaining Se-fortified food/supplements with enhanced antioxidant and antibacterial activities.

3.
Arh Hig Rada Toksikol ; 71(2): 146-151, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32975101

RESUMO

Due to the development of resistance to antimicrobial agents, bacterium Acinetobacter baumannii is nowadays a leading cause of nosocomial outbreaks. Clinically relevant A. baumannii outside hospital settings including natural soils affected by human waste represents a public-health risk for humans and animals. The aim of this study was to investigate the potential of metal-loaded zeolites to eliminate viable A. baumannii from artificially contaminated natural soils. A. baumannii isolate was subjected to the activity of natural zeolitised tuff (NZ) and Cu-modified (CuNZ) or Ag-modified zeolite (AgNZ) in wet, slightly acidic terra rossa and slightly alkaline red palaeosol. A. baumannii survived in terra rossa and red palaeosol supplemented with 1 wt% of NZ for seven days and four months, respectively. The addition of 1 wt% of CuNZ to terra rossa and red palaeosol shortened the survival of A. baumannii to three and 14 days, respectively. The addition of 0.1 wt% of AgNZ to both soils resulted in complete removal of viable A. baumannii within 1 h of contact, while the total native heterotrophic bacterial counts remained high. Since AgNZ is prepared with a simple modification of cost-effective and environmentally friendly natural zeolite, it is a promising material for the remediation of soils contaminated with pandrug-resistant A. baumannii.


Assuntos
Acinetobacter baumannii , Zeolitas , Animais , Antibacterianos , Bactérias , Humanos , Metais , Testes de Sensibilidade Microbiana , Solo
4.
Environ Sci Pollut Res Int ; 24(25): 20273-20281, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28702914

RESUMO

Two types of zeolites-natural clinoptilolite (NZ) and synthetic zeolite A (A)-were enriched with approx. 0.25 mmol of Cu(II), Zn(II), or Ag(I) ions, and the obtained materials (M-Z) were tested against three different isolates of Escherichia coli. Two isolates were environmental isolates from waters in Serbia whereas the third one was DSM 498. Antibacterial activity was studied in different water media-nutrient-rich media (peptone water), water from Sava Lake, and commercially available spring water. The Ag-containing zeolites showed bactericidal activity in the nutrient-rich peptone water after 1 h of contact. Cu- and Zn-containing zeolites showed bactericidal activity in real water samples. Antibacterial activity of the M-Z decreases in all three examined water media in the following order: Ag-NZ ≈ Ag-A > Cu-NZ ≈ Cu-A > Zn-NZ >>> Zn-A, suggesting that mainly the metal type and not the zeolite type have a role in the antibacterial activity. Leaching experiments showed small amounts of the leached Cu(II) and Zn(II) ions, indicating that the antibacterial activity is not due to the metal ions but should be attributed to the M-Z itself. However, leached amounts of Ag(I) from Ag-NZ and Ag-A in peptone water indicate that the released Ag(I) could be mainly responsible for the bactericidal effect of the Ag(I)-containing zeolites. Since no loss of cellular material was found, the antibacterial activity is not attributed to cytoplasmic membrane damage.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Metais Pesados/farmacologia , Zeolitas/farmacologia , Antibacterianos/química , Cobre/química , Cobre/farmacologia , Escherichia coli/isolamento & purificação , Metais Pesados/química , Sérvia , Prata/química , Prata/farmacologia , Zeolitas/síntese química , Zeolitas/química , Zeolitas/isolamento & purificação , Zinco/química , Zinco/farmacologia
5.
Biofouling ; 30(8): 965-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25237773

RESUMO

Due to their susceptibility to bacterial biofilm formation, commercial tubes for medical use are one of the main sources of hospital infections with Acinetobacter baumannii. The anti-biofouling activity of novel composites against the clinical isolate of the multi-drug resistant A. baumannii is reported here. The composites were prepared by addition of micronised silver-exchanged natural zeolite (Ag-NZ) into poly(vinyl chloride) (PVC), followed by coating of the composites with D-Tyrosine (D-Tyr). The Ag-NZ composites (containing 1-15 wt% of Ag-NZ) coated with D-Tyr (Ag-NZ-Tyr) showed a bactericidal effect (100% or a 6.9 log CFU reduction) towards immobilised bacterial cells. The uncoated Ag-NZ composites showed a reduction of up to 70% (4.4 log CFU) of immobilised bacteria in comparison with the original PVC. Rheological testing of the composites revealed that the addition of Ag-NZ slightly affected processability and formability of the PVC and increased the elasticity of the polymer matrix.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/fisiologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/classificação , Croácia , Humanos , Testes de Sensibilidade Microbiana , Cloreto de Polivinila/farmacologia , Prata/farmacologia , Tirosina/farmacologia , Zeolitas/farmacologia
6.
J Hazard Mater ; 233-234: 57-64, 2012 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22818175

RESUMO

Removal of heavy metal ions from aqueous solutions using zeolites is widely described by pseudo-second order kinetics although this model may not be valid under all conditions. In this work, we have extended approaches used for derivation of this model in order to develop a novel kinetic model that is related to the ion exchange mechanism underlying sorption of metal ions in zeolites. The novel model assumed two reversible steps, i.e. release of sodium ions from the zeolite lattice followed by bonding of the metal ion. The model was applied to experimental results of Cu(II) sorption by natural clinoptilolite-rich zeolitic tuff at different initial concentrations and temperatures and then validated by predictions of ion exchange kinetics of other divalent heavy metal ions (i.e. Mn(II), Zn(II) and Pb(II)). Model predictions were in excellent agreements with experimental data for all investigated systems. In regard to the proposed mechanism, modeling results implied that the sodium ion release rate was constant for all investigated metals while the overall rate was mainly determined by the rate of heavy metal ion bonding to the lattice. In addition, prediction capabilities of the novel model were demonstrated requiring one experimentally determined parameter, only.


Assuntos
Metais Pesados/química , Modelos Químicos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Zeolitas/química , Adsorção , Troca Iônica , Cinética , Soluções
7.
Chemosphere ; 88(9): 1103-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22677524

RESUMO

The antimicrobial activity of Cu(2)O, ZnO and NiO nanoparticles supported onto natural clinoptilolite was investigated in the secondary effluent under dark conditions. After 24h of contact the Cu(2)O and ZnO nanoparticles reduced the numbers of viable bacterial cells of Escherichia coli and Staphylococcus aureus in pure culture for four to six orders of magnitude and showed consistent 100% of antibacterial activity against native E. coli after 1h of contact during 48 exposures. The antibacterial activity of NiO nanoparticles was less efficient. The Cu(2)O and NiO nanoparticles showed 100% of antiprotozoan activity against Paramecium caudatum and Euplotes affinis after 1h of contact, while ZnO nanoparticles were less efficient. The morphology and crystallinity of the nanoparticles were not affected by microorganisms. The metal oxide nanoparticles could find a novel application in the disinfection of secondary effluent and removal of pathogenic microorganisms in the tertiary stage of wastewater treatment.


Assuntos
Produtos Biológicos/química , Metais Pesados/química , Nanopartículas/química , Óxidos/química , Óxidos/farmacologia , Zeolitas/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antiprotozoários/química , Antiprotozoários/farmacologia , Estabilidade de Medicamentos , Escherichia coli/efeitos dos fármacos , Euplotes/efeitos dos fármacos , Paramecium caudatum/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Gerenciamento de Resíduos
8.
J Hazard Mater ; 201-202: 260-4, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22178285

RESUMO

The antibacterial activity of natural zeolitized tuffs containing 2.60wt.% Cu(2+), 1.47 Zn(2+) or 0.52 Ni(2+) were tested. Antibacterial activities of the zeolites against Escherichia coli and Staphylococcus aureus were tested after 1h and 24h of exposure to 1g of the zeolite in 100mL of three different media, namely Luria Bertani, synthetic wastewater and secondary effluent wastewater. The antibacterial activities of the zeolites in Luria Bertani medium were significantly lower than those in the other media and negatively correlated with the chemical oxygen demand of the media. The Ni-loaded zeolite showed high leaching of Ni(2+) (3.44-9.13wt.% of the Ni(2+) loaded) and weak antibacterial activity in the effluent water. Since Cu-loaded zeolite did not leach Cu(2+) and the leaching of Zn(2+) from Zn-loaded zeolite was low (1.07-1.61wt.% of the Zn(2+) loaded), the strong antibacterial activity classified the Cu- and Zn-loaded zeolite as promising antibacterial materials for disinfection of secondary effluent water.


Assuntos
Desinfetantes/farmacologia , Desinfecção/métodos , Metais Pesados/farmacologia , Purificação da Água/métodos , Zeolitas/farmacologia , Desinfetantes/química , Desinfetantes/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Metais Pesados/química , Metais Pesados/isolamento & purificação , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Zeolitas/química , Zeolitas/isolamento & purificação
9.
J Hazard Mater ; 185(1): 408-15, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20940085

RESUMO

The Serbian natural zeolite is moderately effective in removing the zinc(II) ions from aqueous solutions. At 298 K the sorption capacity varies from 13 to 26% for the initial Zn(II) solution concentration of 100 and 600 mg Zndm(-3), respectively. The sorption isotherm at 298-338 K is best represented by the Langmuir model and the sorption kinetics by the pseudo-second-order model. The sorption involves a combination of film diffusion, intra-particle diffusion, and a chemical cation-exchange between the Na(+) ions of clinoptilolite and Zn(2+) ions. The sorption was found to be endothermic and spontaneous in the 298-338 K range. The exhausted sorbent can remove phosphate ions and it exhibits an excellent antibacterial activity towards Acinetobacter junii. By dehydration at about 500 °C it transforms to a ZnO-containing product featuring nano-sized wurtzite ZnO particles widespread over the clinoptilolite surface.


Assuntos
Desinfetantes , Fosfatos/química , Zeolitas/química , Zeolitas/farmacologia , Zinco/isolamento & purificação , Zinco/farmacologia , Acinetobacter/efeitos dos fármacos , Adsorção , Algoritmos , Difusão , Concentração de Íons de Hidrogênio , Cinética , Sérvia , Esgotos/análise , Solubilidade , Espectrofotometria Atômica , Termodinâmica , Eliminação de Resíduos Líquidos
10.
Sensors (Basel) ; 10(1): 901-12, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22315575

RESUMO

The subject of this study is the development of flavor wax formulations aimed for food and feed products. The melt dispersion technique was applied for the encapsulation of ethyl vanillin in wax microcapsules. The surface morphology of microparticles was investigated using scanning electron microscope (SEM), while the loading content was determined by HPLC measurements. This study shows that the decomposition process under heating proceeds in several steps: vanilla evaporation occurs at around 200 °C, while matrix degradation starts at 250 °C and progresses with maxima at around 360, 440 and 520 °C. The results indicate that carnauba wax is an attractive material for use as a matrix for encapsulation of flavours in order to improve their functionality and stability in products.


Assuntos
Cápsulas/síntese química , Aromatizantes/análise , Aromatizantes/química , Ceras/química , Teste de Materiais
11.
J Hazard Mater ; 172(2-3): 1450-7, 2009 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19720456

RESUMO

The natural zeolite tuff from the Vranjska Banja deposit (Serbia) has been studied as sorbent for Mn(II) ions from aqueous solutions. The zeolite sample containing mainly clinoptilolite (more than 70%) removes Mn(II) ions by ion-exchange process, which was confirmed by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDXS). XPS showed that there is no surface accumulation of Mn but an almost uniform distribution inside the sorbent; EDXS confirmed that Mn(II) replaced the clinoptilolite Na counter ions. The sorption isotherms were studied at 298 K by batch experiments showing that the Mn(II) removal is best described by the Langmuir-Freundlich or Sips model. The kinetics followed the pseudo-second-order model, the activation energy being 128 kJ mol(-1). The intra-particle diffusion is not the rate-controlling step in the sorption of Mn(II) on clinoptilolite. Thermodynamic data suggest spontaneity of the endothermic ion-exchange process in the 298-338 K range.


Assuntos
Manganês/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Zeolitas/química , Adsorção , Troca Iônica , Cinética , Sérvia , Termodinâmica , Purificação da Água/métodos
12.
Sensors (Basel) ; 8(3): 1488-1496, 2008 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-27879775

RESUMO

The subject of this study was the development of flavour alginate formulationsaimed for thermally processed foods. Ethyl vanilline was used as the model flavourcompound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline inalginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethylvanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about450 µm. Chemical characterization by H-NMR spectroscopy revealed that the alginateused in this study had a high content (67 %) of guluronic residues and was rich in GG diadblocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermalbehaviour of alginate beads encapsulating ethyl vanilline was investigated bythermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC)under heating conditions which mimicked usual food processing to provide informationabout thermal decomposition of alginate matrix and kinetics of aroma release. Two wellresolved weight losses were observed. The first one was in the 50-150 °C temperaturerange with the maximum at approx. 112 °C, corresponding to the dehydration of thepolymer network. The second loss in the 220-325 °C temperature range, with a maximumat ~ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to230 °C most of the vanilline remained intacta, while prolonged heating at elevatedtemperatures led to the entire loss of the aroma compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...